Integrable Systems VS Deterministic Chaos

Based on work with F. Popov and J. Sonnenschein [2211.14150]

Stefano Negro | CCPP, NYU

- Chaos and Integrability: definitions and motivations
- Some simple examples: classical mechanics
- Some simple examples: dynamical processes
- Integrable field theories: instability of direct and inverse scattering
- Integrable field theories: chaoticity of the inverse scattering map
- Conclusions and outlook

Stefano Negro | CCPP, NYU

TABLE OF CONTENTS

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Integrable (dynamical) Systems

Integrable (dynamical) Systems

Analytic solutions (e.g. quadratures)

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Large amount of symmetries (dynamically conserved quantities)

Liouville theorem

Integrable (dynamical) Systems

- Large amount of symmetries (dynamically conserved quantities)
 - Analytic solutions (e.g. quadratures)
 - Regular trajectories (e.g. periodicity)
- Phase space is foliated in lower-dimensional spaces (dynamics takes place on *n*-tori)

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Liouville theorem

Liouville-Arnol'd theorem

Integrable (dynamical) Systems

- Large amount of symmetries (dynamically conserved quantities)
 - Analytic solutions (e.g. quadratures)
 - Regular trajectories (e.g. periodicity)
- Phase space is foliated in lower-dimensional spaces (dynamics takes place on *n*-tori)
- Structure is "not stiff": small perturbations preserve the foliation almost everywhere

However large perturbations might be radically different

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Liouville theorem

Liouville-Arnol'd theorem

Kolmogorov-Arnol'd-Moser theorem

$$\frac{d}{dt}E = 0, \quad E = \frac{p_{\theta}^2}{2ml^2} + mgl(1 - \cos\theta)$$

Stefano Negro | CCPP, NYU

INTRODUCTION: EXAMPLE: THE SIMPLE MATHEMATICAL PENDULUM

$$\frac{d}{dt}E = 0, \quad E = \frac{p_{\theta}^2}{2ml^2} + mgl(1 - \cos\theta) = \frac{1}{2}$$

Stefano Negro | CCPP, NYU

INTRODUCTION: EXAMPLE: THE SIMPLE MATHEMATICAL PENDULUM

$$\frac{d}{dt}E = 0, \quad E = \frac{p_{\theta}^2}{2ml^2} + mgl(1 - \cos\theta) = \frac{1}{2ml^2}$$

Stefano Negro | CCPP, NYU

INTRODUCTION: EXAMPLE: THE SIMPLE MATHEMATICAL PENDULUM

$$\frac{d}{dt}E = 0, \quad E = \frac{1}{1 + \frac{m_2}{m_1}\sinh^2\left(\theta_1 - \theta_2\right)}\frac{p_{\theta_1}}{2m_1l_1^2} + \frac{1 + \frac{m_2}{m_1}}{1 + \frac{m_2}{m_1}\sinh^2\left(\theta_1 - \theta_2\right)}\frac{p_{\theta_2}}{2m_2l_2^2} - \frac{\cos\left(\theta_1 - \theta_2\right)}{1 + \frac{m_2}{m_1}\sinh^2\left(\theta_1 - \theta_2\right)}\frac{p_{\theta_1}p_{\theta_2}}{l_1l_2} - m_1gl_1\left(1 + \frac{m_2}{m_1}\right)\cos\theta_2 - m_2gl_2$$

Stefano Negro | CCPP, NYU

INTRODUCTION: CONTRAST EXAMPLE: THE DOUBLE PENDULUM

Stefano Negro | CCPP, NYU

INTRODUCTION: EXAMPLE: THE DOUBLE PENDULUM

INTRODUCTION: CHAOS

Deterministic Chaos

Stefano Negro | CCPP, NYU

INTRODUCTION: CHAOS

Deterministic Chaos

"When the present determines the future, but the approximate present does not approximately determine the future."

Edward Lorentz

INTRODUCTION: CHAOS

Deterministic Chaos

Sensitivity to initial conditions: Trajectories starting near each other, separate exponentially with time

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

"When the present determines the future, but the approximate present does not approximately determine the future."

Edward Lorentz

INTRODUCTION: CHAOS

Deterministic Chaos

Sensitivity to initial conditions: Trajectories starting near each other, separate exponentially with time

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

"When the present determines the future, but the approximate present does not approximately determine the future."

Edward Lorentz

$$\delta \mathbf{x}(t) \approx e^{\lambda_{\mathrm{L}} t} \delta \mathbf{x}(0)$$

up to characteristic size of the system

Aleksandr Mikhailovich Lyapunov

Stefano Negro | CCPP, NYU

INTRODUCTION: CHAOS

Apparent tension between integrability and chaos

- Integrability \leftrightarrow regularity, predictability, periodicity
- Chaos \leftrightarrow irregularity, non-predictability, absence of recurrence
- Integrable systems do not thermalize on Gibbs Ensemble [Srednicki '94 for finite D systems]

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

INTEGRABILITY VS CHAOS

Apparent tension between integrability and chaos

- Integrability \leftrightarrow regularity, predictability, periodicity
- Chaos \leftrightarrow irregularity, non-predictability, absence of recurrence
- Integrable systems do not thermalize on Gibbs Ensemble
 - Careful definitions are important!
- Integrable systems can present diverging trajectories (saddles)

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

INTEGRABILITY VS CHAOS

Apparent tension between integrability and chaos

- Integrability \leftrightarrow regularity, predictability, periodicity
- Chaos ↔ irregularity, non-predictability, absence of recurrence
- Integrable systems do not thermalize on Gibbs Ensemble
 - Careful definitions are important!
- Integrable systems can present diverging trajectories (saddles)

How do we tell them apart?

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

INTEGRABILITY VS CHAOS

Integrability there exists a method that allows one to solve the theory – i.e. find all physical observables – with a finite number of quadradures [1] or algebraic manipulations.

[Babelon, Bernard, Talon, '03]

Stefano Negro | CCPP, NYU

DEFINITIONS

Deterministic Chaos

for any initial state, one can find a small deformation that drives a system away under time evolution at least in a weak sense: the deviation grows and is unbounded

[Guckenheimer, Holmes, '13]

Chaotic map

 $\forall \epsilon > 0, \forall L > 0, \exists x, y \in M$

a map f between two metric spaces $\left(d_{1},M_{1}
ight)$ and $\left(d_{2},M_{2}
ight)$ is chaotic if there exist nearby points in M_1 that can be sent to distant points in M_2 .

$$I_1 : d_1(x, y) < \epsilon, d_2\left(f(x), f(y)\right) > L$$

Canonical AA map
$$\left\{p_j, q_j\right\}_{j=1}^n \mapsto \left\{I_j, \varphi_j\right\}_{j=1}^n$$
 s.t. $\dot{I}_j = 0$, $\dot{\varphi}_j = \nu_j$ and $\varphi \sim \varphi + 2\pi$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: CLASSICAL MECHANICS

$$\left\{I_{j}\right\}_{j=1}^{n} \text{ s.t. } \left\{I_{i}, I_{j}\right\}_{P} = 0$$

Canonical AA map
$$\left\{p_j, q_j\right\}_{j=1}^n \mapsto \left\{I_j, \varphi_j\right\}_{j=1}^n$$
 s.t. $\dot{I}_j = 0$, $\dot{\varphi}_j = \nu_j$ and $\varphi \sim \varphi + 2\pi$

Suppose phase space is a differentiable manifold \implies AA map is finite-dimensional & smooth

 \implies AA map cannot yield arbitrarily large distances from small ones

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: CLASSICAL MECHANICS

$$\left\{I_{j}\right\}_{j=1}^{n} \text{ s.t. } \left\{I_{i}, I_{j}\right\}_{P} = 0$$

Canonical AA map
$$\left\{p_j, q_j\right\}_{j=1}^n \mapsto \left\{I_j, \varphi_j\right\}_{j=1}^n$$
 s.t. $\dot{I}_j = 0$, $\dot{\varphi}_j = \nu_j$ and $\varphi \sim \varphi + 2\pi$

Suppose phase space is a differentiable manifold \implies AA map is finite-dimensional & smooth

 \implies AA map cannot yield arbitrarily large distances from small ones

Finite-D ISs with phase space a differentiable manifold cannot exhibit deterministic chaos

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: CLASSICAL MECHANICS

$$\left\{I_{j}\right\}_{j=1}^{n} \text{ s.t. } \left\{I_{i}, I_{j}\right\}_{P} = 0$$

Canonical AA map
$$\left\{p_j, q_j\right\}_{j=1}^n \mapsto \left\{I_j, \varphi_j\right\}_{j=1}^n$$
 s.t. $\dot{I}_j = 0$, $\dot{\varphi}_j = \nu_j$ and $\varphi \sim \varphi + 2\pi$

Suppose phase space is a differentiable manifold \implies AA map is finite-dimensional & smooth

 \implies AA map cannot yield arbitrarily large distances from small ones

Finite-D ISs with phase space a differentiable manifold cannot exhibit deterministic chaos

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: CLASSICAL MECHANICS

$$\left\{I_{j}\right\}_{j=1}^{n} \text{ s.t. } \left\{I_{i}, I_{j}\right\}_{P} = 0$$

SIMPLE EXAMPLES: PINBALL PROBLEM

Relax the differentiable manifold hypothesis

Then a finite dimensional integrable system can display diverging trajectories

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Relax the differentiable manifold hypothesis

Then a finite dimensional integrable system can display diverging trajectories

Typical example: the pinball problem

Trajectories are piecewise linear: determined by finite algebraic manipulations

Phase space is <u>not smooth</u>

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: PINBALL PROBLEM

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

Baker's map

$B : [0,1)^2 \longrightarrow [0,1)^2$,

Stefano Negro | CCPP, NYU

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

Baker's map

B : $[0,1)^2 \longrightarrow [0,1)^2$,

$B(x,y) = \begin{cases} \left(2x,\frac{y}{2}\right), & x \in \left[0,\frac{1}{2}\right) \\ \left(2-2x,1-\frac{y}{2}\right), & x \in \left[\frac{1}{2},1\right) \end{cases}$

The evolution of this map is chaotic.

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Baker's map

$B : [0,1)^2 \longrightarrow [0,1)^2$,

$B(x,y) = \begin{cases} \left(2x,\frac{y}{2}\right), & x \in \left[0,\frac{1}{2}\right) \\ \left(2-2x,1-\frac{y}{2}\right), & x \in \left[\frac{1}{2},1\right) \end{cases}$

The evolution of this map is chaotic.

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

This system is integrable!

$$I : (x, y) \longmapsto \{\sigma_i\}_{i \in \mathbb{Z}}$$
$$x = \sum_{i=0}^{\infty} \frac{\sigma_{-i}}{2^{i+1}}, \quad y = \sum_{i=0}^{\infty} \frac{\sigma_{i+1}}{2^{i+1}}$$

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

Baker's map

$B : [0,1)^2 \longrightarrow [0,1)^2$

$B(x,y) = \begin{cases} \left(2x,\frac{y}{2}\right), & x \in \left[0,\frac{1}{2}\right) \\ \left(2-2x,1-\frac{y}{2}\right), & x \in \left[\frac{1}{2},1\right) \end{cases}$

The evolution of this map is chaotic.

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

This system is integrable!

$$I : (x, y) \longmapsto \{\sigma_i\}_{i \in \mathbb{Z}}$$
$$x = \sum_{i=0}^{\infty} \frac{\sigma_{-i}}{2^{i+1}}, \quad y = \sum_{i=0}^{\infty} \frac{\sigma_{i+1}}{2^{i+1}}$$
$$\Downarrow$$
$$I \circ B \circ I^{-1} : \{\sigma_i\} \longmapsto \{\tilde{\sigma}_i = \sigma_{i+1}\}$$

Any totally symmetric function of σ_i is conserved

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

Baker's map

 $I \circ B \circ I^{-1}$ maps small intervals to small intervals

The dynamics is non-chaotic in binary space

The map I injects chaos in the system

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

This system is integrable!

 $I : (x, y) \longmapsto \{\sigma_i\}_{i \in \mathbb{Z}}$ $x = \sum_{i=0}^{\infty} \frac{\sigma_{-i}}{2^{i+1}}, \quad y = \sum_{i=0}^{\infty} \frac{\sigma_{i+1}}{2^{i+1}}$

 $I \circ B \circ I^{-1} : \{\sigma_i\} \longmapsto \{\tilde{\sigma}_i = \sigma_{i+1}\}$

Any totally symmetric function of σ_i is conserved

Baker's map

 $I \circ B \circ I^{-1}$ maps small intervals to small intervals

The dynamics is non-chaotic in binary space

The map I injects chaos in the system

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

SIMPLE EXAMPLES: DISCRETE-TIME DYNAMICAL PROCESSES

This system is integrable!

$$I : (x, y) \longmapsto \{\sigma_i\}_{i \in \mathbb{Z}}$$
$$x = \sum_{i=0}^{\infty} \frac{\sigma_{-i}}{2^{i+1}}, \quad y = \sum_{i=0}^{\infty} \frac{\sigma_{i+1}}{2^{i+1}}$$
$$\Downarrow$$

 $I \circ B \circ I^{-1} : \{\sigma_i\} \longmapsto \{\tilde{\sigma}_i = \sigma_{i+1}\}$

Any totally symmetric function of σ_i is conserved

Solvable by inverse scattering transform

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

 $\partial_{\tau} u(x,\tau) + 6u(x,\tau)\partial_{x} u(x,\tau) + \partial_{x}^{3} u(x,\tau) = 0$

$$\partial_{\tau} u(x,\tau) + 6 u(x,\tau)$$

Solvable by inverse scattering transform

Start with an auxiliary scattering problem

$$\left(-\partial_x^2 + u(x)\right)\psi_k(x) = k^2\psi_k(x)$$

$$\psi_k(x) \sim \begin{cases} e^{-ikx} & x \to -\infty \\ \frac{1}{t_k} e^{-ikx} + \frac{r_k}{t_k} e^{ikx} & x \to +\infty \end{cases}$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

 $\partial_x u(x,\tau) + \partial_x^3 u(x,\tau) = 0$

$$\partial_{\tau} u(x,\tau) + 6u(x,\tau)\partial_{x} u(x,\tau) + \partial_{x}^{3} u(x,\tau) = 0$$

Solvable by inverse scattering transform

Start with an auxiliary scattering problem

$$\left(-\partial_x^2 + u(x)\right)\psi_k(x) = k^2\psi_k(x)$$

$$\psi_k(x) \sim \begin{cases} e^{-ikx} & x \to -\infty \\ \frac{1}{t_k} e^{-ikx} + \frac{r_k}{t_k} e^{ikx} & x \to +\infty \end{cases}$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

If *u* evolves with KdV the data evolves as $r_k(\tau) = r_k(0)e^{8ik^3\tau}, \quad t_k(\tau) = t_k(0)$ (need to consider bound states as well $k = i\kappa_n$, $b_n = r_{i\kappa_n}$

$$\partial_{\tau} u(x,\tau) + 6u(x,\tau)\partial_{x} u(x,\tau) + \partial_{x}^{3} u(x,\tau) = 0$$

Solvable by inverse scattering transform

Start with an auxiliary scattering problem

$$\left(-\partial_x^2 + u(x)\right)\psi_k(x) = k^2\psi_k(x)$$

$$\psi_k(x) \sim \begin{cases} e^{-ikx} & x \to -\infty \\ \frac{1}{t_k} e^{-ikx} + \frac{r_k}{t_k} e^{ikx} & x \to +\infty \end{cases}$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

If *u* evolves with KdV the data evolves as $r_k(\tau) = r_k(0)e^{8ik^3\tau}, \quad t_k(\tau) = t_k(0)$ (need to consider bound states as well $k = i\kappa_n$, $b_n = r_{i\kappa_n}$

Reconstruct the potential $u(x, \tau)$

(Gel'fand-Levitan-Marchenko integral equation)

 $\partial_{\tau} u(x,\tau) + 6 u(x,\tau)$

Solvable by inverse scattering transform

Acts as a "non-linear Fourier transform"

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

$$\partial_x u(x,\tau) + \partial_x^3 u(x,\tau) = 0$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

INTEGRABLE FIELD THEORIES: THE KDV EQUATION

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

INTEGRABLE FIELD THEORIES: THE KDV EQUATION

Direct scattering transform is chaotic

Any small "well" in u(x) corresponds to a bound state \implies drastic modification of $\{t_k, r_k, \kappa_n, b_n\}$ [Landau, Lifshitz #3]

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

[Landau, Lifshitz #3]

Small potential $u(x) \ll 1$

$$\psi_k(x) = e^{-ikx} + \delta\psi_k(x)$$
$$\left(\partial_x^2 + k^2\right)\delta\psi_k(x) = u(x)e^{-ikx}$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

- Direct scattering transform is chaotic
- Any small "well" in u(x) corresponds to a bound state \implies drastic modification of $\{t_k, r_k, \kappa_n, b_n\}$
 - Scattering in 1D (and 2D) is "strongly-coupled"

Direct scattering transform is chaotic

Any small "well" in u(x) corresponds to a bound state \implies drastic modification of $\{t_k, r_k, \kappa_n, b_n\}$ [Landau, Lifshitz #3]

Scattering in 1D (and 2D) is "strongly-coupled"

Small potential $u(x) \ll 1$

$$\psi_k(x) = e^{-ikx} + \delta\psi_k(x)$$
$$\left(\partial_x^2 + k^2\right)\delta\psi_k(x) = u(x)e^{-ikx}$$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

$$\delta \psi_k(x) = \int \frac{dy}{4\pi i} \frac{e^{ik|x-y|}}{k} u(y)e^{-iky}$$

Arbitrarily large corrections from the IR $k \sim 0$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Gain a concrete feeling of the instability computing conserved charges

Gain a concrete feeling of the instability computing conserved charges

Definition via recursive relation

$$Q_n = \int_{\mathbb{R}} dx \, w_{n-1}(x)$$

$$\begin{cases} w_0(x) = u(x) \\ w_n(x) = \partial_x w_{n-1}(x) + \sum_{k=0}^{n-2} w_k(x) w_{n-2-k}(x) \end{cases}$$

 $w_{2n-1}(x)$ are total derivatives $\Rightarrow Q_{2n} = 0$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Gain a concrete feeling of the instability computing conserved charges

Definition via recursive relation

$$Q_n = \int_{\mathbb{R}} dx \, w_{n-1}(x)$$

$$\begin{cases} w_0(x) = u(x) \\ w_n(x) = \partial_x w_{n-1}(x) + \sum_{k=0}^{n-2} w_k(x) w_{n-2-k}(x) \end{cases}$$

 $w_{2n-1}(x)$ are total derivatives $\Rightarrow Q_{2n} = 0$

Stefano Negro | CCPP, NYU

INTEGRABLE FIELD THEORIES: THE KDV EQUATION

	u(x) = 0	$u(x) = \frac{e^{-x}}{10}$
Q_1	0	1.772×1
Q_5	0	-1.049×10^{-1}
Q_9	0	-1.527×10^{-1}
<i>Q</i> ₁₃	0	-9.066
<i>Q</i> ₁₇	0	-1.186 ×

The dynamics is non-chaotic in scattering space

The inverse/direct scattering maps inject chaos

$$\begin{cases} w_0(x) = u(x) \\ w_n(x) = \partial_x w_{n-1}(x) + \sum_{k=0}^{n-2} w_k(x) w_{n-2-k}(x) \end{cases}$$

 $w_{2n-1}(x)$ are total derivatives $\Rightarrow Q_{2n} = 0$

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Similar situation as with the Baker's map

	u(x) = 0	$u(x) = \frac{e^{-x}}{10}$
Q_1	0	1.772×1
Q_5	0	-1.049×10^{-1}
Q_9	0	-1.527×2
<i>Q</i> ₁₃	0	-9.066
<i>Q</i> ₁₇	0	-1.186 ×

CONCLUSIONS AND OUTLOOK

- Integrability vs chaos in quantum systems
- Explore more refined measures of chaos (e.g. statistics of trajectories)

Stefano Negro | CCPP, NYU

INTEGRABLE SYSTEMS VS DETERMINISTIC CHAOS

Integrable systems can show behaviour typically associated with chaos

- The map from initial conditions to conserved charges is responsible

- Systems with non-differentiable phase space from high-energy theory (Zig-zag, TTbar, ...)

Stefano Negro | CCPP, NYU

Thank you

$$\partial_t \phi(x,t) + 3\phi(x,t)^2 \partial_x \phi(x,t) + \partial_x^3 \phi(x,t) = 0$$

$$\phi_1(x,0) = \partial_x \arctan\left[\sqrt{3} \frac{\sin x}{\cosh \sqrt{3}x}\right]$$

$$\phi_2(x,0) = \partial_x \arctan\left[\sqrt{3} \frac{\sin x}{\cosh\sqrt{3}x}\right] - \frac{1}{50} \frac{\cosh x \sin \frac{1}{10}}{\cosh 2x - \cos \frac{1}{5}}$$

Slightly deformed initial profile, with a small additional indentation around x = 0

Stefano Negro | CCPP, NYU

Evolves in t periodically: it is a breather solution

Stefano Negro | CCPP, NYU

INTEGRABLE FIELD THEORIES: THE MKDV EQUATION

Stefano Negro | CCPP, NYU

INTEGRABLE FIELD THEORIES: THE MKDV EQUATION

